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Groverian and geometric entanglement measures of the n-party pure state are expressed by the �n−1�-party
reduced state density operator directly. This main theorem derives several important consequences. First, if two
pure n-qudit states have reduced states of �n−1�-qudits, which are equivalent under local unitary transforma-
tions, then they have equal Groverian and geometric entanglement measures. Second, both measures have an
upper bound for pure states. However, this upper bound is reached only for two-qubit systems. Third, it
converts effectively the nonlinear eigenvalue problem for the three-qubit Groverian measure into linear eigen-
value equations. Some typical solutions of these linear equations are written explicitly and the features of the
general solution are discussed in detail.
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I. INTRODUCTION

Quantum theory opens up new possibilities for informa-
tion processing and communication and the entanglement of
a quantum state allows us to carry out tasks, which could not
be possible with a classical system �1–8�. It plays a pivotal
role for exponential speedup of quantum algorithms �9�, tele-
portation �10�, and superdense coding �11�.

The quantum correlation is the essence of the entangle-
ment and it cannot be created by local operations and clas-
sical communication �LOCC� alone. Analysis of multipar-
ticle entanglement provides insight into the nature of
quantum correlation. However, the current situation is far
from satisfaction.

Linden et al. revealed that almost every pure state of three
qubits is completely determined by its two-particle reduced
density matrices �12�. In other words, we cannot get much
new information from the given pure three-qubit state if the
reduced two-qubit states are known. The case of pure states
of any number n of parties was considered in Ref. �13� and it
was shown that the reduced states of a fraction of the parties
uniquely specify the quantum state. One may consider more
general and open questions of vital importance: How much
information is contained in any reduced �n−1�-qubit state?
How do we use this information to convert the nonlinear
eigenproblem of entanglement measure calculation to the lin-
ear eigenproblem? Is there any physically relevant connec-
tion between the pure n-party states which have local unitary
�LU� equivalent �n−1�-party reduced states? Does such a
connection impose an upper bound for entanglement mea-
sure?

Groverian entanglement measure G �14� gives concise an-
swers to all of these questions. It is an entanglement measure
defined in operational terms, namely, how well a given state
serves as the input to Grover’s search algorithm �15�.

Groverian measure depends on maximal success probability
Pmax and is defined by the formula G���=�1− Pmax. The
maximal success probability is the overlap of a given state
with the nearest separable state. The same overlap defines
geometric measure of entanglement introduced earlier as an
axiomatic measure �16–18�. In this view Groverian measure
gives an operational treatment of the axiomatic measure and
is a good tool to investigate the above-mentioned questions.
In the following we will consider only the maximal success
probability and our conclusions are valid for both Groverian
and geometric measures.

Surprisingly, any reduced state resulting from a partial
trace over a single qubit suffices to find Pmax of the original
pure state. For example, the entanglement of the three-qubit
pure state is completely understood from the two-qubit
mixed state reduced from the original pure state. Since bi-
partite systems, regardless mixed or pure, always give a lin-
ear eigenproblem, this fact enables us to obtain analytic ex-
pressions of Groverian entanglement measures for pure
three-qubit states.

It is well known that entanglement measures are invariant
under local unitary transformations �4,19–21�. However, the
LU-equivalent condition is not the only one for the same
Groverian entanglement measure. In fact, if two pure states
have LU-equivalent reduced states which are obtained by
taking partial trace once, it turns out that they have the same
entanglement measures. Owing to this the lower bound for
Pmax is derived. However, it is not reachable for three- and
higher-qubit states and, therefore, is not precise.

In Sec. II we derive a formula connecting Groverian mea-
sure of a pure state and its reduced density matrix. In Sec. III
we establish a lower bound for Groverian measure. In Sec.
IV we present analytic expressions for the maximal success
probability that reflect main features of both measures. In
Sec. V we make concluding remarks.

II. GROVERIAN MEASURE IN TERMS OF REDUCED
DENSITIES

We consider a pure n-qudit state ���. The maximum prob-
ability of success is defined by
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Pmax��� = max
q1q2¯qn

��q1q2 ¯ qn����2, �1�

where �qk�’s are pure single-qudit normalized states. Our in-
tention is to derive a formula which connects the maximum
probability of success and �n−1�-qudit reduced states. In
general, reduced states are mixed states and are described by
density matrices. Hence, we express the maximum probabil-
ity of success in terms of density operators right away. We
will use the notation � for the state ��� and � for the pure
single-qudit state density operators, respectively. Equation
�1� takes the form

Pmax��� = max
�1�2¯�n

tr���1 � �2 � ¯ � �n� . �2�

Theorem 1. Any �n−1�-qudit reduced state uniquely de-
termines the Groverian and geometric measures of the origi-
nal n-qudit pure state.

Proof. Define a single-qudit state ��� by the formula

��� = �q1q2 ¯ qk̂ ¯ qn��� , �3�

where the caret means exclusion. Obviously

��q1q2 ¯ qn����2 = ��qk����2 = tr��������k� . �4�

The absolute value of the inner product ��qk ���� is maximum
when qk= ��� /��� ��� and therefore

max
�k

tr��������k� = ����� = tr�������� . �5�

Denote by ��k̂� the reduced state resulting from a partial

trace over the kth qudit, that is ��k̂�=trk ����. From this defi-
nition it follows the identity

tr�������� = tr���k̂��1 � �2 � ¯ �k̂ ¯ � �n� . �6�

Owing to this identity, Eq. �5� can be rewritten as

max
�k

tr���1
� �2

� ¯ � �n�

= tr���k̂��1 � �2 � ¯ �k̂ ¯ � �n� . �7�

Both sides of Eq. �7� must have the same maximum and
this is the proof of the theorem.

Since the right-hand side of Eq. �7� contains the reduced

density operator trk �=��k̂� which is generally a mixed state,
the next maximization is nontrivial.

Equation �7� does not mean that a pure state and its once
reduced state have equal Groverian measures. One cannot
maximize the mixed-state density matrix over product states
to find the entanglement measure because the resulting mea-
sure is not an entanglement monotone �14,18,22�.

Equation �7� connects directly the maximum probability
of success with the reduced density operator

Pmax��� = max
�1�2¯�k

ˆ
¯�n

tr���k̂��1 � �2 � ¯ �k̂ ¯ � �n� .

�8�

In fact, Theorem 1 is true for any entanglement measure.
Consider an �n−1�-qudit reduced density matrix that can be

purified by a single-qudit reference system. Let ���� be any
joint pure state. All other purifications can be obtained from
the state ���� by LU transformations U � 1��n−1� where U is a
local unitary matrix acting on single qudit and 1 is a unit
matrix. Since any entanglement measure must be invariant
under LU transformations, it must be the same for all puri-
fications independently of U. Hence, the reduced density ma-
trix � determines any entanglement measure on the initial
pure state.

However, there is a crucial difference. In the case of
Groverian measure the proof expresses entanglement mea-
sure by the reduced density matrix directly. As will be ex-
plained in Sec. IV, Eq. �8� is a simple and effective tool for
calculating three-qubit entanglement measure. No such for-
mula is known for other measures and general proof for other
measures has limited practical significance.

Theorem 2. If two pure n-qudit states have LU equivalent
�n−1�-qudit reduced states, then they have equal Groverian
and geometric entanglement measures.

Proof. Assume that the density matrices of pure states are
� and �� and corresponding maximum probabilities of suc-
cess are Pmax and Pmax� . Suppose the local unitary transfor-

mation U1 � U2 � ¯ � Un−1 maps ���k�̂�=trk� �� to ��k̂�
=trk � as follows:

��k̂� = �U1
� U2

� ¯ � Un−1����k�̂�

��U1
� U2

� ¯ � Un−1�+, �9�

where the superscript plus sign means Hermitian conjugate.
The trace with any complete product �1 � �2 � ¯ � �n−1

state gives

tr���k̂��1
� �2

� ¯ � �n−1�

= tr����k�̂���1
� ��2

� ¯ � ��n−1� , �10�

where ��k=Uk+�kUk are single-qubit pure states too. Let us
choose the product state that maximizes the left-hand side.
According to Eq. �8� the left-hand side is Pmax and therefore
Pmax� Pmax� . Similarly Pmax� � Pmax, therefore Pmax= Pmax� .

III. LOWER BOUND FOR MULTIQUBIT SYSTEMS

Theorem 1 sets a clear lower bound for the maximum
probability of success.

Below A is an arbitrary 2�2 Hermitian matrix, r is a unit
real three-dimensional vector, and components of the vector
� are Pauli matrices. The trace of the product of matrices A
and r ·� can be presented as a scalar product of vectors r and
tr�A��. The scalar product of two real vectors with the con-
stant modules is maximal when vectors are parallel. Conse-
quently, we have

max
r2=1

tr�Ar · �� = �tr�A��� = ��tr A�2 − 4 det A �11�

and the positive root of radicals is understood.
An arbitrary density matrix � for a pure state qubit may

be written as �=1 /2�1+r ·��, where r is a unit real vector.
Then Eq. �11� can be rewritten as
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max
�

tr�A�� =
1

2
�tr A + ��tr A�2 − 4 det A� . �12�

From Eq. �12� it follows that

max
�

tr�A�� �
1

2
�tr A� . �13�

We define 2�2 matrix Mn−1 by the formula

Mn−1 = tr1,2,. . .,n−2���n̂��1
� �2

� ¯ �n−2
� 1� , �14�

where trace is taken over �1,2 , ... ,n−2�-qubits. Equation �8�
takes the form

Pmax = max
�1�2

¯�n−1
tr�Mn−1�

n−1� , �15�

where tr means trace over �n−1�-qubit. Equation �13� gives

Pmax �
1

2
max

�1�2
¯�n−2

tr Mn−1

=
1

2
max

�1�2
¯�n−2

tr���n̂��1
� �2

� ¯ �n−2
� 1� ,

�16�

where tr on right-hand side of Eq. �16� means trace over all
qubits. Thus inequality �13� suggests a simple prescription:
Replace a pure qubit density matrix by a unit matrix and add
a multiplier 1/2 instead. We use this prescription n−1 times,
eliminate all single-qubit density operators step by step from
Eq. �8� and obtain

Pmax �
1

2n−1 . �17�

Note that this lower bound is valid only for pure states. The
question at issue is whether it is a precise limit or not. If it is
indeed the case, then what are the pure states which have the
lower bound of Pmax? We will prove that this lower bound is
reached only for bipartite states.

Denote by �k1k2¯km the reduced density operator of qubits
k1k2¯km, 1�m�n−1. Equation �7� and �13� together yield

Pmax��� �
1

2n−m−1 Pmax��k1k2¯km� . �18�

Note, Pmax��k1k2¯km� does not define any entanglement mea-
sure as �k1k2¯km’s are mixed states. It is the maximal overlap
of the mixed state with any product state and we use it as the
intermediate mathematical quantity.

Lemma 2. If a pure state has limiting geometric and/or
Groverian entanglement Pmax=1 /2n−1, then all of its reduced
states are completely mixed states.

Proof. Equation �18� for m=1 and Eq. �12� impose

Pmax �
1

2n−1 �1 + �1 − 4 det �k� . �19�

The maximal probability of success reaches the minimal
value if the square root vanishes. Consequently, density ma-
trices �k must be a multiple of a unit matrix �k=1 /2 and thus
all one-qubit reduced states are completely mixed. Then two-

qubit density matrices �k1k2 must have the form

�k1k2 =
1

4
�1 � 1 + g����

� ��� , �20�

where g��=tr��k1k2�� � ��� is a 3�3 matrix with real en-
tries. Hereafter, the summation for repeated three-
dimensional vector indices �� ,� ,	 , . . . =1 ,2 ,3� is under-
stood unless otherwise stated. To reach the lower bound we
must have equality instead of inequality in �18� and this con-
dition imposes Pmax��k1k2�=1 /4 resulting in g��=0. Hence
�k1k2 = �1 /4�1 � 1 and thus all two-qubit reduced states are
completely mixed. One can continue this chain of derivations
by induction. Indeed, suppose all m-qubit states �m
n� are
completely mixed. Then �m+1�-qubit density matrices
�k1k2¯km+1 must have the form

�k1k2¯km+1 =
1

2m+1 �1�m+1 + g�1�2¯�m+1
��1 � ��2 � ¯

� ��m+1� , �21�

where

g�1�2¯�m+1
= tr��k1k2¯km+1��1 � ��2 � ¯ � ��m+1� .

�22�

From Eq. �18� it follows that Pmax��� takes its minimal value
if Pmax��k1k2¯km�=1 /2m. Equation �21� is consistent with this
condition if and only if the maximization of the term of
g�1�2¯�m+1

��1 � ��2 � ¯ � ��m+1 yields zero. Then
g�1�2¯�m+1

=0 and therefore

�k1k2¯km+1 =
1

2m+11
�m+1. �23�

Thus if all m-qubit reduced states are completely mixed then
all �m+1�-qubit reduced states are also completely mixed.
On the other hand, all one-qubit reduced states are com-
pletely mixed. By induction all reduced states are completely
mixed. The induction stops at pure states. In contrast to
mixed states, the maximization of the term g�1�2¯�n

��1

� ��2 � ¯ � ��n must yield unity for pure states as Eq. �7�
requires.

Lemma is proved.
Theorem 3. None of the multiqubit pure states except two-

qubit maximally entangled states satisfies the condition
Pmax=1 /2n−1.

Proof. When n=2, it is well known that the EPR states
and their LU-equivalent class reach the lower bound, i.e.,
Pmax=1 /2. Now we would like to show that there is no pure
state with limiting Groverian measure for n=3. Lemma 2
requires that the density matrix with limiting Groverian mea-
sure should be in the form

� =
1

8
�1�3 + g��	��

� ��
� �	� . �24�

Since � is a pure state density matrix, it must satisfy �2=�.
This condition leads to several constraints, one of which is
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− ig��	g�����������	����
�� � �� � ���

= 6g��	��
� ��

� �	 �25�

where ���	 is an antisymmetric tensor. Since this constraint
cannot be satisfied for real g��	, there is no pure state which
has limiting Groverian measure at n=3.

Now we will show that there is no pure state for n�4 too.
Suppose there is n-qubit state ��� such that all of its reduced
states are completely mixed. Choose a normalized basis of
product vectors �i1i2¯ in�, where the labels within the ket
refer to qubits 1 ,2 , . . . ,n in that order. The vector ��� can be
written as a linear combination

��� = 	
i1i2¯in

Ci1i2¯in
�i1i2 ¯ in� �26�

of vectors in the set. All reduced states of the state ��� are
completely mixed if and only if

	
ikjk

�ikjk
Ci1i2¯in

Cj1j2¯jn
� =

1

2n−1�i1j1
�i2j2

¯ �ikjk
ˆ

¯ �injn
,

k = 1,2, . . . ,n . �27�

Note that the normalization condition follows from the above
equation. Define n−1 index coefficients

Di1i2¯in−1
= �2Ci1i2¯in−10. �28�

Setting in= jn=0 in Eq. �27� we obtain

	
ikjk

�ikjk
Di1i2¯in−1

Dj1j2¯jn−1

� =
1

2n−2�i1j1
�i2j2

¯ �ikjk
ˆ

¯ �in−1jn−1
,

k = 1,2, . . . ,n − 1. �29�

Hence, the �n−1�-qubit state

��� = 	
i1i2¯in−1

Di1i2¯in−1
�i1i2 ¯ in−1� �30�

exists and all of its reduced states are completely mixed. The
contraposition of it is that if there is no pure state which has
limiting Groverian measure at n=3, it is also true for n�4.
Theorem 3 is proved.

Thus, the lower bound of inequality �17� is unreachable
for n�3. This seems to mean that Eq. �17� is not a precise
limit.

IV. ANALYTIC EXPRESSIONS FOR MAXIMUM
PROBABILITY OF SUCCESS

The maximization of the pure three-qubit states over
product states generally reduces to nonlinear eigenvalue
equations �18�. However, Eq. �8� converts it effectively into
linear eigenvalue equations. Thus, one can compute the en-
tanglement measures for a wide range of three-qubit states
analytically. As an illustration consider one parametric
W-type �23� three-qubit state

��� =
1

�1 + 2 + 4
��100� + �010� + 2�001�� , �31�

where  is a free positive parameter. The calculation method
is elaborated in Ref. �24� and here we present only final
results. In three different ranges of definition the maximal
success probability is differently expressed. In the first case,
Pmax is the square of the first coefficient provided it is greater
than 1/2,

Pmax =
1

1 + 2 + 4 , 0 
  
 
�5 − 1

2
�1/2

. �32�

In the second case, Pmax is the square of the diameter of the
circumcircle of the acute triangle formed by three coeffi-
cients,

Pmax =
46

�1 + 2 + 4�2�32 − 1 − 4�
,


�5 − 1

2
�1/2

�  � 
�5 + 1

2
�1/2

. �33�

In the third case, Pmax is the square of the third coefficient
provided it is greater than 1/2,

Pmax =
4

1 + 2 + 4 ,  � 
�5 + 1

2
�1/2

. �34�

It is also possible to compute Pmax for Eq. �31� numerically
�25�. For numerical calculation we consider the kth qubit as
�qk�=cos �k�0�+ei�k sin �k�1� with k=1,2 ,3. Since the coef-
ficients of ��� are all real, we can set �k=0 for all k and
express Pmax in a form

Pmax = max
�1,�2,�3

��q1��q2��q3����2. �35�

Thus numerical maximization over �1, �2, and �3 directly
yields Pmax. As shown in Fig. 1�a� the numerical result �black
dots� perfectly coincides with the analytic results �solid
lines� expressed in Eqs. �32�–�34�.

Let us consider another one parametric state

��� =
1

�1 + 2 + 4 + 6
��100� + �010� + 2�001� + 3�111�� .

�36�

Again there are three cases. If four coefficients form a cyclic
quadrilateral, then Pmax=4R2, where R is the circumradius of
the quadrangle. Otherwise, Pmax is the square of the largest
coefficient. In the first case, Pmax is the square of the first
coefficient,
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Pmax =
1

1 + 2 + 4 + 6 ,

 

1

3
��3 18�57 + 134 − �3 18�57 − 134 − 1�1/2  0.685.

�37�

In the second case, Pmax is the square of the circumcircle of
the cyclic quadrangle formed by four coefficients,

Pmax =
86

− 1 + 22 + 4 + 86 + 8 + 210 − 12 ,

1

3
��3 18�57 + 134 − �3 18�57 − 134 − 1�1/2 � 

�
1
�3

��3 46 + 6�57 + �3 46 − 6�57 + 1�1/2. �38�

In the third case Pmax is the square of the last coefficient,

Pmax =
6

1 + 2 + 4 + 6 ,

 �
1
�3

��3 46 + 6�57 + �3 46 − 6�57 + 1�1/2  1.46. �39�

The function Pmax�k� and numerical results are shown in Fig.
1�b�. Both figures strongly show that our analytical expres-
sions of Pmax perfectly coincide with the numerical result.

V. CONCLUSIONS

Equation �8� allows us to calculate the maximal success
probability for three-qubit states which are expressed as lin-
ear combinations of four given orthogonal product states
�26�. The answer is more complicated than a simple formula,
but each final expression of the measure has its own mean-
ingful interpretation. Namely, Pmax can take the following
values �up to numerical coefficients�:

�i� The square of the circumradius of the cyclic polygon
formed by coefficients of the state function.

�ii� The square of the circumradius of the crossed figure
formed by coefficients of the state function.

�iii� The largest coefficient.
Each expression has its own range of definition where

they are applicable. Although the above picture seems
simple, the separation of the applicable domains is a highly
nontrivial task. To make clear which of the expressions
should be applied for a given state we refer to �26�. All of our
results on Groverian measure of three-qubit pure states are
summarized in �27�.

Equation �8� gives the nonlinear eigenvalue problem for
four- and higher-qubit states and it is natural to ask whether
there is an extension of Eq. �8� that allows us to find analytic
results for four-, five-, or general n-qubits. Although we have
no distinct results here, we have obtained some insight from
the analysis of the information contained in one- and two-
qubit reduced states. Probably, it is possible to express the
maximal success probability in terms of one- and two-qubit
reduced states in case of four-qubit pure states. Such for-
mula, if it can be derived, will give linear equations for four-
qubit pure states. However, the situation is opposite in the
case of five-qubit states. The method does now allow us to
convert the task to the linear eigenvalue problem and more
powerful tools are needed to calculate maximal success prob-
ability of general n-qubit states.
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(a)

(b)

FIG. 1. �Color online� Pmax for �a� Eq. �31� and �b� Eq. �36�.
The solid lines represent the analytical results of Pmax and the black
dots are the numerical results. This figure strongly supports that our
analytical results are correct.
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