

회사 소개서

2015. 3. 24

가톨릭대학교 생명공학 기술로 제조한 바이오 플라스틱 원료 펠릿, 기능성 소재 및 완제품

㈜바이오소재 (Bio Polymer Co. Ltd..)

www.neomcc.com www.biopack.or.kr

목 차

1. 회사현황

콘소시엄 추진 체계도

회사 개요

사업 영역

주요 연혁

조직도 및 주주현황

대표이사 주요경력사항

지적재산권 보유 현황

논문 등 주요 전문지 투고 현황

주요 정부과제 수행 현황

2. 기술 및 제품

바이오 플라스틱 소개

바이오 플라스틱 종류별 특징

기술개발 히스토리

생산 공정도 - 원료

생산 제품 및 응용분야

기술의 장점

기술의 차별성

경쟁기술 비교

경쟁업체 비교

3. 마케팅 계획

관련 사업 현황

시장규모

시장 현황 및 전개 방향

바이오 플라스틱 업체 및 제품현황

추진 체계도

경쟁환경 및 마케팅 전략

목표시장 및 마케팅 전략

현재 거래처 및 납품 실적

4. 자금소요내역

단계별 추진 전략 필요자금 및 내역 필요 설비

^{*}참고자료 1. 자금 및 설비(한국)

^{*}참고자료 2. 인력 계획

^{*}첨부. 포토갤러리 1~4

콘소시엄 추진 체계도

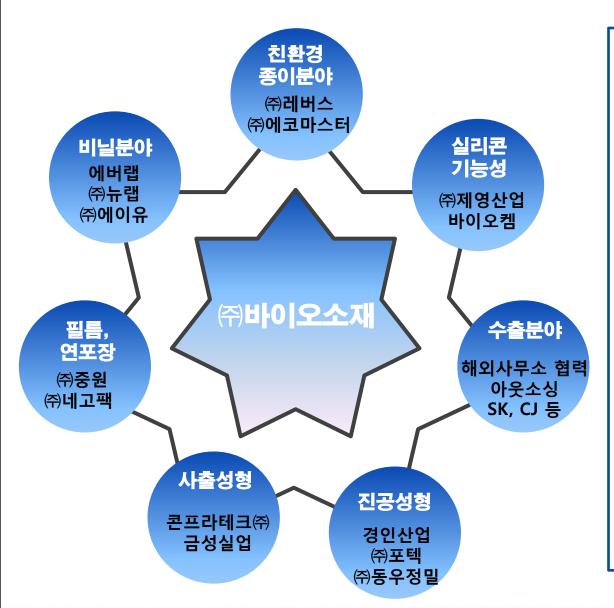
회사 개요

사업 영역

주요 연혁

조직도 및 주주현황

대표이사 주요경력사항


지적재산권 보유 현황

논문 등 주요 전문지 투고 현황

주요 정부과제 수행 현황

콘소시엄 추진 체계도

- ●당사: 바이오 플라스틱 원료, 시트 생산 및 기술지원, 영업 총 괄
- ●협력업체 : 원료구입 및 생산, 영업
- ●외주가공업체 : 위탁생산 담당
- ●협력업체 및 외주업체 : 협회 회원사를 중심으로 사 전 심사를 통해 선정
- ●생산제품: 비닐 및 필름 분야 제품, 진공성형, 사출성형, 압출성형, 블로우성형

회사 개요

회 사 명	㈜바이오소재 Bio Polymer Co., Ltd.	설립연월일	2014. 02. 17		
대표자명	유 영 선	사업자등록번호	130-86-89974		
본 사	경기 부천시 원미구 지봉	봉로 43 가톨릭대학교	창업보육센터 305~306호		
전화번호	02-6238-6283~5	팩스번호	032-344-6283		
홈페이지	www.neomcc.com	전자우편	tawake@naver.com		
업태(업종)	제조, 도.소매, 서비스 (바이오 플라스틱)				
주요품목	① 생분해, 산화생분해, 바이오 베이스 플라스틱 원료 및 완제품 ② 신선도, 항균, 방충 등 원료 및 완제품 ③ 친환경 코팅액 및 코팅지 등 ④ 농원예용품, 산업용품, 1회용품, 에코 패키징 등				
자본금	127백만원				
기 타	 ○ 기업부설연구소 - 제 2014112623 (2014. 6. 3) ○ ISO 9001:2008 (2014. 3. 19) ○ ISO 14001:2004 (2014. 3. 19) ○ 벤처기업 확인서 - 제20140400442 (2014. 5. 14) ○ UAE 산화생분해 원료 및 제품 인증 신청 (2014. 6. 2) ○ BP라벨, KBMP 산화생분해 첨가제, 제품 인증 				

think veen veen

사업 영역

바이오 플라스틱 원료

- 친환경·생분해·산화생분해·바이오 플라스틱 원료 제조 및 판매
- 농산, 식품공장 부산물 원료 사용 : 옥수수대, 왕겨, 옥피, 대두피, 소맥피 등
- 기능성 소재 원료 펠릿
 - 항균, 방충, 신선도 원료 펠릿 등

친환경, 기능성 제품 분야

- 무표백, 무형광제 크라프트 종이 호일
- 신선도유지 필름(위생장갑, 위생백, 랩 등)
- 분해기간 제어 바이오 필름 제품
- 방충, 신선도 제품
- 바이오 위생백, 롤백 등 씽크그린 제품
- 바이오 친환경 실리콘 응용 제품 등

TGR (산화생분해 첨가제)

EH-X plus (신선도 첨가제)

기술이전 및 플랜트 수출

- 바이오 플라스틱 원료 수출
- 기능성 원료 수출
- 기술이전, 설비, 노하우를 결합하여 수출

think green

주요 연혁 - ㈜바이오소재 설립 전

2002~2010(개발단계)

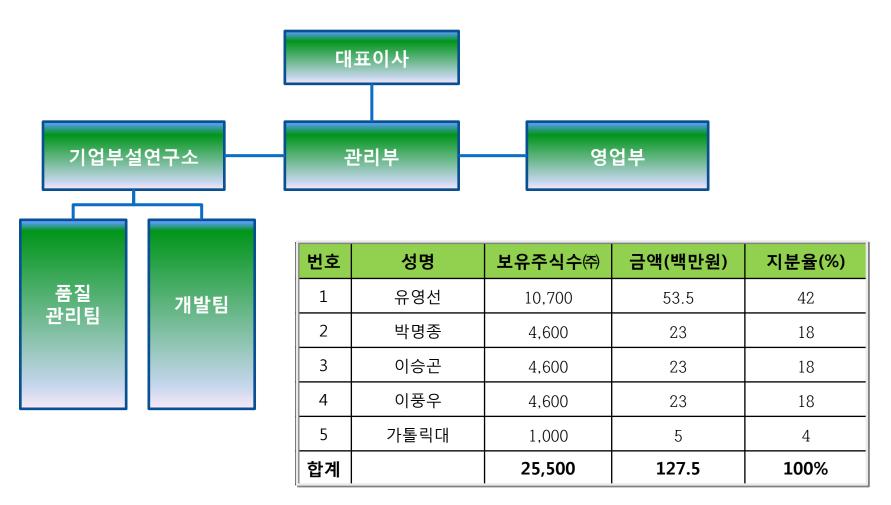
- ㅇ 생분해 전분계 원료 및 발포 제품 개발
- ㅇ 생분해성 원료 펠렛, 생활용품, 포장재 등 제조 판매
- ㅇ 바이오 베이스 원료 및 제품 개발 완료, 사업화 추진
- ㅇ 바이오 소재 연구소 설립

2011~2013(준비 및 확산단계)

- o 2013.11.08.~11.11 : 중국 광저우 "중국국제녹색창신제품전" 전시회 참가
- ㅇ 2013.09.23 심양바이오전시회 중국 심양국제과학전시관
- o 2013.05.28~31 킨텍스 KOREA PACK 2013 "2013 바이오플라스틱 및 국내외 산업화 현황" 그린심포지엄
- o 2013.03.13 킨텍스 KOPLAS 2013 심포지엄
- 2013.01.25. : 2013년 총회 및 심포지움 개최 경기증기청 대강당
- o 2012.12.07 에이빙 TV: "VIP ASIA AWARD 2012" 탄소저감형 바이오소재 선정수상
- o 2012.10.23~26 킨텍스 서울 국제포장전 " 협회 친환경 테마관" 참가운영
- o 2012.10.15 친환경 플라스틱 연구개발 및 시장유통 협약식 협회, 경기도, CJ
- o 2012.05.22 킨텍스 KOREA PACK 2012 친환경 테마관 친환경 테마관운영 및 바이오 심포지엄
- o 2012.03.25~03.28 : 미국 라스베가스 전시회 참가
- 2012.12.16. : 해외 신흥자본국 협력 추진 경기도청
- o 2011.09.28.~10.01 : 킨텍스 KOPLAS 참가 36개 부스
- ㅇ 2011.04.19 중국 상해 차이나 플라스 중국 상해 푸동 신 국제 전람중심
- o 2011.01.27 바이오소재 및 응용현황 그린 심포지움 개최 생기원 패키징센터
- (사)한국바이오소재패키징협회 설립 및 콘소시엄 사업 추진

think green

주요 연혁 -㈜바이오소재 설립 후


2014년 ~ 현재 (사업화단계)

- o 2015.03.15 : KTNG "보헴 시가 슬림핏" 외포장 투명비닐 적용, 상품화
- 2015.03.03 : 광양만권경제자유무역청 투자유치 MOU 체결
- o 2015.02.27 : 광양만권경제자유무역청 심포지엄 개최
- o 2014.12.15 : 코트라, 난징 환경부, 강소성순환경제협회 제휴, 농업폐기물 활용 방안 세미나.
- ㅇ 2014.12.03 : 한국의류시험연구원 세미나 국내외 바이오 플라스틱 표준화 및 식별표시제도 동향
- o 2014.11.20 : KBMP 산화생분해 첨가제, 제품 인증, 산화분해 첨가제, 제품 인증
- o 2014.10.14 : 산학협력포럼 참석, 공동브랜드 싱크그린 관련사 MOU.
- o 2014.09.01 : think green(싱크그린) 신제품 발표
- o 2014.07.08~07.13 : 중국 제남 "한국제품박람회" 참가
- o 2014.06.26 : 한중기술이전대회 참가 대전, KISTI
- o 2014.06.05. : UAE 산화생분해 인증 신청 Additive Manufacturer & Supplier 2건 동시 신청
- o 2014.05.26 : 기업부설연구소 인증
- ㅇ 2014.05.14. : 벤처기업인증
- o 2014.05.14 : KBMP 인증
- o 2014.03.19: ISO 9001: 2008, ISO 14001: 2004 획득
- 2014.02.17: (주)바이오소재 설립 산화생분해 원료, 친환경 완제품 제조 판매

조직도 및 주주현황

1주 금액: 5,000원, 자본금: 127,500,000

대표이사 주요 경력사항

구분	내 용
주요 경력	 1987~1991 : 오뚜기 중앙연구소 선임연구원 1991~2000 : 한국과학기술정보원구원(KISTI) 책임연구원 2000~2002 : 한국산업기술진흥원(KIAT, 전 한국기술거래소) 전문위원 2002~2010 : ㈜네오엠씨씨, 바이오소재연구소 대표 2011~2013 : ㈜에이유 CTO 2011~현재 : (사)한국바이오소재패키징협회 회장 2011~현재 : 바이오소재연구소 소장 2010~현재 : (사)한국포장학회 부회장 2009~현재 : 전국과학기술정보협의회 경기 부회장 2013~현재 : 가톨릭대학교 생명공학과 부교수 2013~현재 : 성균관대학교 식품생명공학과 초빙교수 2013~현재 : ㈜바이오소재 대표이사
기 타	 최우수 연구상(단백질 분해효소 개발) 공로포상 (KISTI) 2011 미래패키징 신기술 정부 포상 2012 VIP ASIA AWARD, 그린에너지 부문 식품 기술사, 기술거래사 기술표준원, 화학시험연구원, 산업부, 농식품부 등 심사 평가위원

지적 재산권 현황

등록 : 5건, 상표 : 3건

출원번호	제목	출원인
10-2014-0040663	신선도 기능이 부여된 친환경 원료 펠릿 및 이의 제조방법	㈜바이오소재
10-2015-0009677	셀룰로오스 가소화를 통한 열가소성 셀룰로오스, 이를 이용한 산화생분해 첨가제, 및 그 제조방법	㈜바이오소재
10-2014-0134892	내수성이 부여된 친환경 김밥용 포장지 및 이의 제조방법	이승구, 유영선
10-2014-0134889	신선도 유지 기능이 부여된 친환경 김밥용 포장지 및 이의 제조방법	이승구, 유영선
10-2014-0093154	바이오매스 펠릿을 포함하는 팔레트 조성물 및 팔레트 제조방법	콘프라테크, 박명종, 유영선
10-2013-0088826	소맥피를 이용한 탄소중립형 고강도 바이오 플라스틱 필름 및 그 제조방법	뉴랩, 에이유, 유영선
10-2013-0007451	식품포장용 친환경 저탄소 바이오매스 소재를 활용한 서방성 다층방충필름	에이유, 유영선, 한정구
10-2013-00161477	식물체 바이오매스를 함유하는 박막형 필름 및 그 제조방법	뉴랩, 에이유, 유영선
10-2013-0007450	바이오매스 필름용 조성물 및 이를 이용한 바이오매스 필름	에이유, 유영선, 한정구
10-2013-0007449	휘발성 유기화합물 저감용 조성물 및 이의 제조방법(등록)	에이유, 유영선, 한정구
10-2012-0109106	환경친화적이고 전도성이 유지되는 전도성 필름 및 이를 이용한 전도성 시트 및 전도성 트레이(등록)	^ქ 에이유, 유영선, 한정구
10-2012-0022075	바이오매스를 다량 함유한 친환경 종량제 봉투 및 그 제조방법	콘프라, 박명종, 김미경
10-2012-0005014	바이오 베이스 쓰레기 봉투 및 이의 제조방법(등록)	콘프라, 유영선
10-2010-0106327	친환경적이며 재생가능한 종이 코팅용 수용성 코팅조성물 및 그 제조방법(등록)	㈜바이오소재, 유영선
10-2008-0067924	고분자 상용성을 개선시키는 상용화 첨가제 및 그 제조방법	유영선, 설상인
10-2008-0050879	톱날과 스푼이 구비된 자연 분해성 및 내열성 다용도 스푼	유영선, 김만수, 설상인
10-2006-0092077	친환경 생분해성 전분 용기의 성형장치 (등록)	유영선, 이종기
40-2014-0067394	상표명 "씽크그린" (16류, 21류)	㈜바이오소재
40-2014-0074651	상표명 "옥소바이오 씽크그린" (16류, 21류) Oxo-Bio	㈜바이오소재
40-2015-0019917	상표명 "EH-X" (16류, 21류) EH-X	㈜바이오소재

논문 등 주요 전문지 투고현황

- •복합분해성 플라스틱 식품포장 필름의 제조 및 분해성. <u>한국식품과학회지</u>, 35권 5호, p877-883, 2003
- 복합분해성 식품포장용 플라스틱, (<u>산업식품공학</u> -Food Engineering Process), 7권 3호, p134-140. 2003. 8
- Degradability of Multi-Degradable HDPE and LDPE Food Packaging Films. Food Sci. Biotechnol., 12(5): 548-553, 2003
- •.복합 분해성 플라스틱(멀칭필름)의 농업적 활용에 따른 효과 평가. 2005 <u>농업환경연구</u>(문서번호 11-1390093-000064-10), : 95-110 (농업과학기술원), 2006. 3
- Assessment and Applications of Multi-Degradable PE Films as Packaging Materials. <u>Food Sci. Biotechnol.</u>, 15(1): 5-12, 2006
- •고추 비닐 피복용 분해성 비닐개발 및 시기별 잡초발생 양상 비교, 한국잡초학회지, 26(별2), 2006
- 분해성 플라스틱의 개발 및 시장동향, <u>한국식품과학회지</u>-Korean J. Food Sci. Technol, 40(4), 365-374, 2008
- 광분해성 플라스틱의 패키징 소재로의 이용에 대한 고찰 ; <u>한국포장학회지</u>, 14(2), 81-88, 2008
- 변성전분과 폴리에틸렌 혼합물의 물성 및 분해성 평가(Mechanical Properties and Degradability of Modified Starch and Polyethylene Blends), 한국포장학회지(J of Korea Society of Packaging Science & Technology), 16(2/3), pp 59-65. 2010.5
- 생붕괴성 플라스틱 포장재의 제조 및 제조된 소재의 안전성과 분해성 연구(Studies in the Development of Biodegradable Plastics and Their Safety and Degradability), 산업식품공학(Food Engineering), 15(3), pp 257-261. 2011.8
- •분해성 저밀도폴리에틸렌 혼합 필름의 제조와 물성 분석(Developments of Degradable LDPE Films and Their Properties)", <u>한국환경기술학회지(J of Korean Soiciety of Environtal Technology)</u>, 12(3), p182-188 2011.9
- "바이오 플라스틱 규격 및 시험방법(Bio Plastics Standards)", <u>한국포장협회 월간 포장계</u>, 통권 226호, p85-97, 2012년 2월호
- "바이오 소재 활용기술(바이오 플라스틱 중심으로)", 생명공학정책연구센터, 한국생명공학연구원, 교과부, 2012.5
- Studies in the Properties of Low Density Polyethylene Blend Film, Korean J. Food Sci. Technol., 2011
- Development of Antioxidant Packaging Material by Applying Corn-Zein to LLDPE Film in Combination with Phenolic Compounds", J.of Food Sci., 77(10), p E273-E279. 2012. 12
- Inhibitory effect of soy protein coating formulations on walnut (Juglans regia L.) kernels against lipid oxidation", LWT -5 Food Science and Technology, 51(1), p393-396. 2013. 4
- "UAE, 산화생분해 플라스틱의 규제 및 대응현황-분석보고서", 보고서 번호 130-14-003, 국제환경규제기업지원센터. 2014년 3월
- 농산부산물인 옥피, 대두피, 왕겨, 소맥피를 이용한 산화생분해 바이오플라스틱 필름 개발(Development of
- •Oxo-biodegradable Bio-plastics Film Using Agricultural By-product such as Corn Husk, Soybean Husk, Rice Husk and Wheat Husk), 청정기술(Clean Technollogy), 20(3), pp 205-211. 2014.9

주요 정부과제 수행 현황

연 구 과 제 명	연구기간	지 원 기 관
친환경 유사생체막 식품포장재 개발	'08.12~'11.12	농림수산식품부
대두박 단백질과 셀룰로오스 혼합물을 이용한 생분해성 친환경 플라스틱 필름 제조 및 물성연구	′10.02~′11.02	성균관대
식품패키징센터 기본계획 수립연구	′10.07~′10.10	농림수산식품부
커피찌꺼기 재생자원을 이용한 바이오매스 플라스틱 소재 개발	'11.05~'11.12	생산기술연구원
친환경 어업용품의 개발 -기술로드맵 지원사업	′11.06~′11.12	중기청, KISTI
공압출 방식의 에너지 절감형 나노 단열 필름 개발	′11.07~′12.06	산업단지공단
나노구조 제어 및 신공정 복합기술에 의한 방충기능 다층필름 개발	′11.09~′14.09	농림수산식품부
재활용이 가능한 바이오플라스틱 기반 다층 전도성 포장 및 성형 소재 개발	'11.11~'13.10	경기도
기능성 친환경 곶감 또는 농수산물 포장용 드레이 및 금형개발	'12.07~'13.03	경북 중기청
비식용계 유기성 부산물 바이오매스를 이용한 바이오 플라스틱 소재개발 및 탄소저감형 바이오 사출용기 개발	′12.12~′13.11	중기청 구매조건부
탄소저감형 바이오 다층필름 포장재 개발	′12.12~′14.11	경기도 기술개발-네고팩
탄소중립형 고강도 및 발포 식물체 바이오 플라스틱 개발	'13.07 ~ '13.12	교과부 (에코마스터)
유기농 신선 농식품의 수확후 생물학적 안정성 확보를 위한 관리시스템 개발	'13.11 ~ '16.11	농식품부
옥피, 옥대등 바이오매스 부산물을 이용한 바이오플라스틱 사출품의 분해기간 조절 및 물성강화 기술 개발	′14.07 ~ ′15.01	교과부 (콘프라테크)

바이오 플라스틱 소개

바이오 플라스틱 종류별 특징

기술개발 히스토리

생산 공정도 - 원료

생산 제품 및 응용분야

판매중인 주요제품

기술의 장점

기술의 차별성

경쟁기술 비교

경쟁업체 비교

바이오 플라스틱 소개

- 교토 의정서, **이산화탄소 감량, 지구 온난화** 영향
- 바이오 플라스틱 시장이 **급속하게 성장**할 것으로 예상
- 식품용기, 산업용품, 전자제품, 자동차, 건축토목, 생활용품 등에서 기존 플라스틱을 대체 전망

- 대부분의 플라스틱 제품은 분해기간이 수백년 이상으로 난분해성 생산과정에서 이산화탄소(CO2) 배출량이 많아 국제적으로 규제대상으로 분류
- 기존 플라스틱의 문제점을 해결하기 위해 '생분해 플라스틱'이 등장 가격경쟁력이 떨어졌으며, 생분해 기간이 짧아(3~6개월) 유통에 어려움이 있었음
- 바이오 플라스틱 향후 과제는 생분해 기간 조절, CO₂ 감소, 가격경쟁력 등이 있음

당사 바이오 플라스틱 주요 기능 및 특징

강도유지

재활용 용이

가격경쟁력

생분해 기간 조절 가능 다양한 응용제 품 적용 신선도, 항균, 방충 등 기능 성 부여

바이오 플라스틱 종류별 특징

	바이오 플라스틱				
구 분	생분해 플라스틱		사하세터체 프리스티	바이오베이스플라스틱	
	천연물계	석유계	산화생분해 플라스틱	결합형	중합형
바이오매스 함량	50-70% 이상	자료 없음	자료 없음	20-25% 이상	
사용원료	천연물, 미생물계	석유유래 원료 중합 합성	산화생분해제, 식물체 등	천연물-고분자 결합체	천연물 단량체 중합합성
종류	PLA, TPS, PHA, AP, CA 등	PBS, PES, PVA, PCL, PBAT 등	Oxo Bio-PE, Oxo Bio-PP 등	Bio-PE, Bio-PP, Bio-PET, Bio-PA 등	
규격기준	ISO 14855 ASTM D 6400 등		ASTM D 6954 UAE S 5009	ASTM D 6866 CEN/TR 15932 등	
T L T-J	생분해 우수		생분해기간 조절 가능	이산화탄소 저감 우수	
장점	탄소저감 우수(천연물계)		물성 우수, 투명도 유지	물성 우수	
단점	고가, 물성 저하		산화분해(열, UV) 필요	생분해 속도 매우 느림	
	유통 중 분해가능성		현재 필름 적용 가능	강도, 내수성 문제가능성	
분해 기작	미생물 분해		산화분해후, 미생물 분해	-	
생분해 시험	6개월 이내, 90% 45일 이내, 60%		6개월 이내, 60%	-	
범용 플라스틱 사용여부	사용 안함		사용함	사용함	
생분해 기간	3-6	개월	36개월	자료 없음	

[■] 국내 기업들은 대부분 생분해 플라스틱 분야이며, 바이오베이스, 산화생분해는 현재 시장 진입단계임. 현재 ㈜바이오소재를 통하여 원료를 공급받고 있음.

개발 히스토리

개발 기간	내 용	시험기관
2001년 ~ 2005년	● 변성전분 펠렛 및 포장재 개발 - 인장, 신장 등 물성 나쁨 → 상품화 실패 - 플라스틱 고분자에 쌓여 <mark>생분해 저하됨</mark>	생활환경시험연구원
2006년 ~2008년	● 산화생분해 원료 및 제품 개발 - 열분해, 광분해, 생분해 실험 ● 화학시험연구원 광분해 및 생분해 시험방법 개발	화학시험연구원
	● 열가소성전분(TPS), 셀룰로오스 개발 - 가격 경쟁력, 빠른 생분해, 물성 열악 문제 → 이마트, 삼성에버랜드 등 일부 소량 판매 - 식품포장, 산업용품 적용 어려움	화학시험연구원
● 다양한 식물체 바이오매스, TPS, 산화 생분해제, 식 품첨가물 적용: 바이오매스 플라스틱 개념도입 - 미니스탑, 대한항공, 아모레퍼시픽, 스타벅 스 등 다양한 분야 적용 판매중		산업환경센터 패키징센터
2010년 ~ 현재	 사단법인 설립 : 콘소시움 형성 및 공동대응 자동차 내장품 개발 : GMK(쉐보레) 제품 응용 분야 확대 연구개발 및 사업화 	KATRI 산업환경센터

* 요약(키워드)

- 기술 및 노하우축적, 제품 응용기술 확보, 양산기술 확립
- 사단법인(체계적 추진), 국내외 협력 추진

생산공정도 - 원료

제조 방법

- 천연 식물체 바이오매스 → 분체, 미립화 분말 → 건조 및 코팅 → 가소제, 활제 등 첨가제 → 트윈익스트루더 : 열화학 변성, 그라프트 결합 → 열가소성 바이오 펠렛 완성 → 식품포장재 제조
- @전분 → 건조 → 가소제 → 트윈익스트루더 : 고온, 고압 열변성 → 열가소성 전분(TPS) 펠렛 완성 → 완제품 제조

Fine Powder

Grain diameter : 5~100µm or less

Bio Plastics

- -Vinyl, film
- -Vacuum forming
- -Injection molding
- -Blow molding etc..

Bio Pellet

- Biodegradable
- Oxo-biodegradable
- Bio based
- Functional

Core technology

- Dehydrate
- : moisture => forming
- Water-stable coating
- Heat-Resistancy
- : Preventing carbonization
- Improvement of property
- : Melt Index,

Miscibility etc..

생산제품 및 응용분야

소재

바이오매스

- 옥수수대, 밀껍질, 콩껍질, 왕겨, 대두피 등 식물체 부산물, 전분 등 산화생분해, 생분해 수지

Reduce

Reuse

기능성 원료

- 항균, 신선도, 방충
- 통기, 전도성
- VOC 저감

(쇼핑백, 산업용, 농업용

- 생분해
- 탄소저감
- 인체무해

시트/사출

- 산업용
- 건축용
- 친환경시트
- 생활용품

판매 중인 주요 제품

KT&G 담배 포장지에 산화생분해 필름 사용 및 think green 로고 사용

바이오 + 기능성 제품 판매

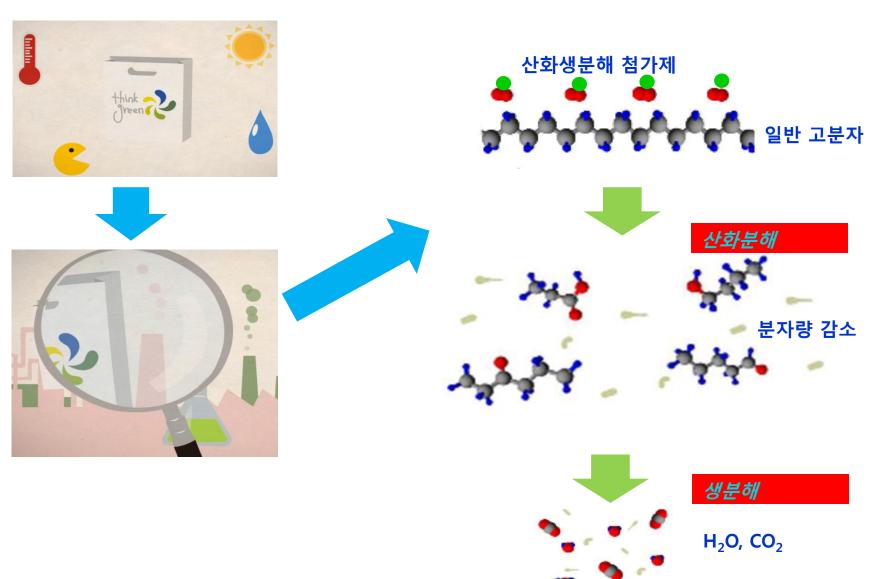
기술의 장점

• 타사 친환경 제품 가격과 동등하거나 저렴

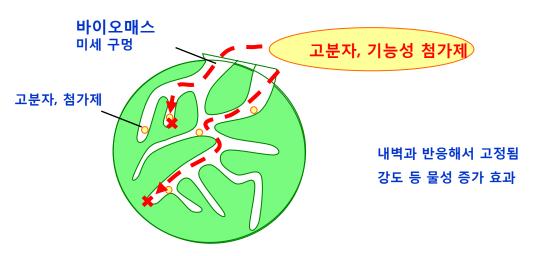
• 부산물을 대량 적용하여 원가 절감 • 기존 플라스틱 대비 이산화탄소 발생 감소

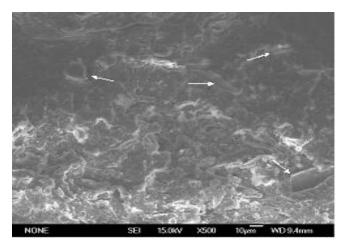
• 내열성(약 120도)

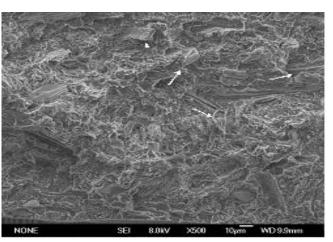
- 제품강도
- 재활용 우수
- 내수, 내유성 등 우수
- 전자레인지 사용 가능


• 항균, 방충

- 식품 신선도유지 기능
- 도전성
- 제습기능
- 건축자재 등 다양한 활용




기술의 차별성 – 산화생분해 첨가제 & 플라스틱



기술의 차별성 - 물성개선, 셀룰로오스 가소화 기술

셀룰로오스 분말 필름 (SEM 사진)

셀룰로오스 가소화 필름 (SEM 사진)

경쟁기술 비교

구분	당사 바이오 플라스틱	타사 바이오 플라스틱
기술성	• 화학적 결합 및 가소화 기술 적용 • 공정 단순화	중합 기술 적용발효, 촉매 및 중합공정 필요
신규성	• 국내외 관련 기술이 없음 - 기술 진입기간, 기술 격차 유지 : 약 3-5년	• 생분해 원료 : 약 14종 존재
진보성	 기존 기술에 내수성, 내열성 기술 추가적용 강도, 인장, 신장 등 물성 우수, 내열성 120℃ 재활용 / 재사용 가능 초음파 가공 가능 (후 가공성 우수) 	 내열성 취약: PLA 66.8도, 내열성 PLA 90도 재활용 어려움: PLA 동일 재질만 가능 깨지는 특성: PL법 저촉 우려 초음파 가공 등 후가공 어려움
산업상 이용 가능성	 가격 경쟁력 유지 범용 플라스틱 대비 유사 가격 예상 판매가: 1.3~4.0\$ 완제품 생산 시 분진문제 해결 (그라프트 결합) 	 원료 가격: 범용 플라스틱 대비 약 2~3배 판매가: 4.2~6.0\$ 완제품: 6.0~8.0\$ 제조원가 상승 요인 있음 성형 가공비 상승, 생산성 저하 문제 상존
설비/활용	•기존 설비 이용 가능	•설비 증설 또는 변형 필요

❖ 요약(키워드)

- 화학적 결합, 신기술 신제품, 재활용, 초음파 등 후가공성, 가격경쟁력, 기존 설비 사용

경쟁업체 비교

국가	회사	상품명	소재	비고
	SKC	스카이그린	PLA	
	대상	바이오닐	PLA	사업화 보류 중
한국	도레이케미칼	에코웨이-Z	PEAT + PLA	
	롯데케미칼	파펫바이오	바이오베이스	중합형
	SK케미칼	에코젠	바이오베이스	중합형
미국	Nature Works	Eco PLA	PLA	
	National Starch & Chemicals	ECO-FOAM	전분	
독일	Biotech	Bioplast	전분, PCL	
일본	다이셀 화학공업	셀그린	PCL	

출처: (사)한국포장협회 월간 포장계, 2012년 8월호, (사)한국바이오소재패키징협회 홈페이지

- 당사는 생분해, 산화생분해, 바이오 베이스 등 바이오 플라스틱의 원천기술을 보유하고 있음.
- 국내의 경쟁사는 현재 없음/국내 관련 업체들은 소재와 생산 방법이 다름
 (생분해 플라스틱(PLA)은 전분을 발효시켜 젖산(Lactic Acid)를 만들고 그 젖산을 Polymer와 중합하여 제조함)
- 롯데케미칼, SK케미칼은 생산 방식이 당사와 다르기 때문에 가격이 당사에 비해 약 2~3배 정도 수준임

관련 사업 현황

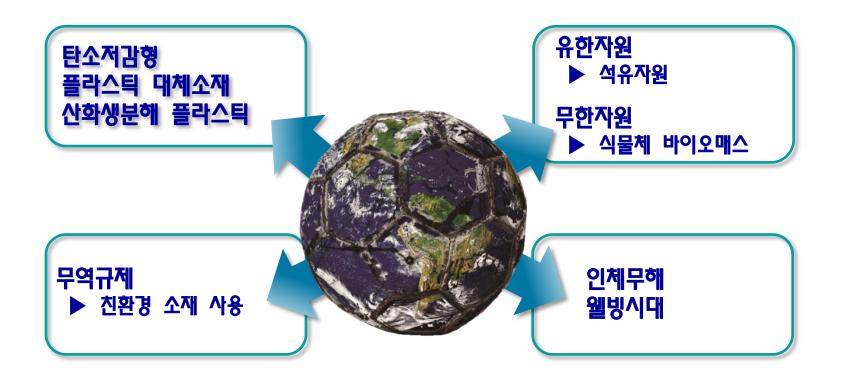
시장규모

시장 현황 및 전개 방향

바이오 플라스틱 업체 및 제품현황

추진 체계도

경쟁환경 및 마케팅 전략

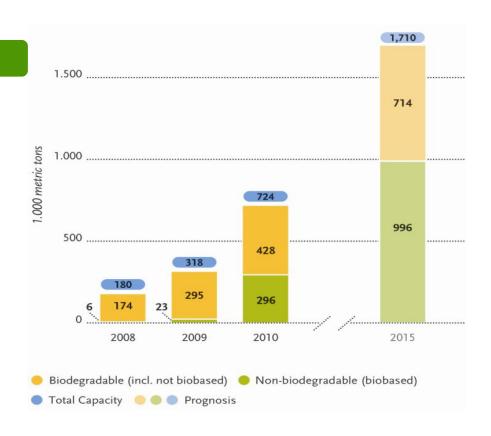

목표시장 및 마케팅 전략

현재 거래처 및 납품 실적

think green

관련 사업 현황

- 1. 교토의정서 이후 환경규제 강화
- 2. 전 세계 산업 전반에 화석연료 대체형 친환경 산업 활성화
- 3. 아랍에미레이트를 중심으로 전세계 국제환경규제 가속화 시작



시장 규모

해외 바이오 플라스틱 시장규모

지역별 바이오 플라스틱의 수요를 보면, 서유럽지역이 40%, 북미 지역 이 약 30%, 일본이 20% 정도의 수요 를 나타내고 있으나, 점차 시간이 지 날수록 중국을 비롯한 타 지역으로 의 확대가 될 것으로 기대됨. (The Freedonia Group Inc., "World Bioplastics" 2009)

에코 패키징 분야 시장 전망

(단위 : 억불)

2008	2010	2012	2014	2016	2018
16.69	18.29	20.17	22.24	24.51	27.06

세계시장 규모 전망과 한국 및 세계 패키징 시장 점유율(1.3%) 적용하여 추정

- 패키징 분야는 세계 시장 성장률(CAGR 5%)과 유사하게 증가할 것으로 예상
- 2008년에는 약 16.59억불, 2020년에는 약 29.80억불에 이를 것으로 전망됨

시장 요구 변화

시장현황 및 전개방향

☑ 생분해 플라스틱

☑ 중합형 원료 : PLA 등

📝 조기 생분해 컨셉 유지

시장요구 변화

☑ 생분해 플라스틱(물성강화, 가격 저렴 요구)

☑ 바이오 베이스 플라스틱(결합형, 중합형)

산화생분해 플라스틱(국제 기준 적합)

시장 현황

❖ 범용 수지 시장 : 1,946억 2,000만 \$, 1,500억톤

- 목표시장 : 초기 0.2% → 향후 1%

❖ 바이오 플라스틱 시장 : 54억\$, 1억톤

❖ 바이오 플라스틱 시장 : 약 20% 이상 성장율 유지

- ✓ 석유자원 절감 및 대체 소재 필요성 대두
- ✓ 석유 화학 유래 원료가격 상승 및 가격 변동폭 심함
 - 기업 비용증가 원인, 원자재비 예측 곤란
- ✔ 이산화탄소 저감, 인체 무해 소재 적용 요청 증대
- ❖ 바이오 플라스틱에 대한 해결 과제(시장 요구)
- -가격 경쟁력: 기존 난분해성 플라스틱 시장을 대체하기 위해 원가 절감 필요
- 생분해 기간 조절 : 유통 중 분해 방지
- 재활용의 용이성 : 재활용이 안 된다면 오히려 친환경이 아니라는 의견도 있음
- 물성 보강, 공정흐름 개선(생산속도, 불량률개선) 등

바이오 플라스틱 업체 및 제품현황

바이오베이스 플라스틱 생분해, 산화생분해

- ㈜바이오소재 :(사)한국바 이오소재패키징 협회를 중심으로 설립 운영 중
- 바이오베이스 : 결합형
- Nobamont(Italy) : 미국
 EPI와 조인트벤처, 전분+
 플라스틱
- Bio-PE, Bio-PP, Bio-PET
- 중합형에 비해 투명도가 부족하나 가격경쟁력 (2,000\$내외) 및 내열성, 생산성이 우수함

바이오베이스 플라스틱 (중합형)

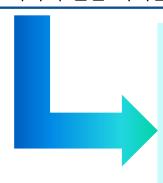
- Braskem(Brazil), SK케미칼 (Korea), 코카콜라 등
- Bio-PE, Bio-PP, Bio-PET
- 생분해 느림(탄소저감)
- 가격이 비싼 단점 (5,500~6,000\$)
- 내열성
- 고투명,
- 고강도

생분해성 플라스틱

- 미국 Nature works
- 독일 BASF
- UCC
- 소화고분자
- Novamont
- PLA, PHA, PHB, PCL, Aliphatic polyester 등
- 가격이 비싼 단점 (5,000~6,000\$)
- 빠른 생분해

산화생분해 플라스틱

- Novont : 일본, 미국, 벨기 에, 중국 지사 =>노바몬 트로 M&A
- 영국Sympony, 농업용 제 품판매권(Ciba)
- 물성 약함
- 가격이 비싼 단점
- 일본, 영국에서 판매 중

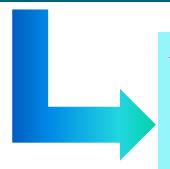

[❖] 당사의 경우: 생분해, 산화생분해, 바이오베이스 분야 모두 가능

경쟁환경 및 마케팅 전략

❖ 제품의 경쟁 환경

- -세계적인 규제강화로 기존 플라스틱 대체재 시장 확대
- -기존 생분해성 플라스틱의 단점으로 지적돼온 (1)고가, (2)재활용 곤란, (3)물성 약화, (4)조기 생분해 등 단점을 보완한 제품의 수요가 증가
- 바이오 플라스틱 :기존 제품 대비 동등한 가격 수준으로도 판매가 가능
- 화학적 결합 처리를 통한 내열성, 인장강도, 신장 등 물성이 우수

❖마케팅 전략


- 한정적인 석유자원 사용 저감, 환경에 대한 부하 감소를 강조
- 당사의 바이오 플라스틱은 **농업 부산물, 산업 부산물, 식품공장 부산물** 등을 사용한 제품이라는 점을 부각시키는 공세적 전략 구사
- 비 식용계 유기성 폐자원을 주로 사용 : 전분 등 식용자원 사용을 최소화
- 결합형 바이오 베이스 기술
 - : 국내외에서는 개발되지 않은 기술, 개발 성공하더라도 2~3년의 기술격차 존재
 - : 환경 선진국을 대상으로 수출 시장 개척 가능
- **생분해, 산화생분해 및 바이오 베이스(결합형) 제품을 동시 사업화**하여 바이어가 원하는 맞춤형 제품 공급
- 기능성 고부가가치 제품 및 차별화 전략 제품 출시

목표시장 및 마케팅 전략

❖ 목표 시장

- -기존 플라스틱 시장 및 생분해 플라스틱 원료 시장
- 일부 완제품 판매 전략 구사
 - : 생협, 풀무원, 올가, 스타벅스, 제약업체, 판촉물 업체 등 제품을 구매하는 모든 업체를 대상으로 판매 전략
- 전기제품 포장재 : 전자제품을 비롯하여 각종 공산품을 생산하는 모든 업체
- 자동차 내장재, 건축 토목 분야, 농업 분야로 진출 등 제품 사용처 다각화

❖ 마케팅 전략

- 단기 전략
 - : 바이오 베이스 펠릿 : 기존 플라스틱 생산업체를 중심으로 판매
 - : 개발이 진행되는 품목(방충, 신선도, VOC 등 기능성 원료 펠릿)에 대하여 제품 계획 수립
- 중장기 전략
 - : 고가의 플라스틱을 적용하고 있는 업체를 중심으로 고기능성 바이오 원료 펠릿 등 개발 판매 다각화
- ◎ 설비의 대형화 및 저렴한 판매단가의 달성을 통한 대량 생산, 보급체계 구축



think green

현재 거래처 및 과거 납품 실적

진행중인 업체

think green

해외 합작방안

- 1.해외 시장개척의 교두보 확보
- 2.급성장하는 해외 자국내의 산업용품 적용 용이
- 3. 풍부한 농업부산물 원자재 확보 용이
- 4.세계시장 진출의 생산기지 확보

- 의 MOU / 双方协议 / 상호 협약
- Turn Key Base Biz → USA, EU, Asia Etc.
- Information sharing / 信息共享 / 정보 공유

Oversea: VietNam, CHINA, USA etc

- Material, Product Biz/原料(원료-Pellet),生产
- * Machinery Production/机械生产/기계생산
- Oversea office/海外办公室/해외사무소
- Oversea Biz Promotion/自国商业推广/ 자국내 비지니스추진

KOREA

- -Korea office/韩国办事处/한국 사무소
- -Bio-product commercialization/生物产品的商业化 /바이오 제품 사업화
- Korea Biz Promotion/韩国商业推广/ 한국비지니스추진

- ❖ 사업추진 1단계 : 한국 원료 생산 → 해외 자국내 완제품 생산 → 자국내 판매
 - 한국 원료를 수입하여, 자국내에서 완제품 생산
- ❖ 사업추진 2단계 : 자국내 원료 및 완제품 자체생산 →자국내 판매 및 해외 수출
 - 한국의 원료 기술 및 노하우를 자국으로 기술 이전하여, 자국 원료 및 완제품 생산
 - 기술 이전비용 등 추후 결정

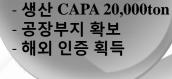
단계별 추진 전략

필요자금 및 내역

필요 설비

참고자료 1. 자금 및 설비(한국) 참고자료 2. 인력 계획 첨부. 포토갤러리 1~3

단계별 추진전략


- -창고 및 공장 설립
- 내수 및 수출 확대
- 생산설비 확충
- 인력 확충
- 기능성 제품 추가 개발
- 생산 CAPA 150,000ton

-글로벌 확산 - 일반 고분자 시장 잠식 (3% 이상)

3단계(2018~2019)

- -생산 CAPA 1,550.000ton - 2공장 설립
- 해외지사 설립

Bio Plastics Global Standard

- 완제품 생산 - 내수 및 수출 - 인력확보 및 교육

1단계(2014~2015)

필요자금 및 내역

❖ 완제품 생산

- 사출 성형(가정, 생활용품 등) 월 소비량 300-400ton

- 압출성형품(시트 : 포장용기) 월 소비량 300~400ton

- 필름류(쇼핑백 외 각종 봉투) 월 소비량 700~900ton

- 월간 원료 소비량 : 약 1,200~1,700ton

- 연간 원료 소비량 : 약 15,000~20,000ton(2000ton 기준 약 40억원 소요)

❖ 토지 확보 및 공장 건설

- 토지 확보: 30,000m²

- 공장 건축 : 10,000m²

- 창고 확보: 10,000m²

- 원료 생산 설비 : 월 3500ton 원료 생산 시 약 50억원 소요

- 사출성형 설비 : 약 15억원

- 압출 설비 : 약 10억원

- 필름 설비 : 약 10억원

- 기타 시설비 : 약 5억원

- 운영비 및 원재료비 : 약 60억원(초기 운영비 포함)

필요설비

펠렛 생산 라인

비닐 압출 성형기

진공 성형용기 생산 라인

시트 생산 라인

참고자료 1. 자금 및 설비(한국기준)

단위: 억원

항목	내역	2015	2016	2017	2018	2019
77170	토 지				20	100
공장구입 -	건 물				20	50
	익스트루더	50	50	10		
71717141	ACM분체기		6		4	4
기계장치 	시트설비		10	10	10	20
	사출기, 코팅액 기계		10	10	10	
운영자금	원료구입비, 인건비 등	60	100	매출재투자		
기 타	차량운반구, 공구, 집기등	2	5	1	5	5
합 계		112	181	31	69	179

^{*} 공장부지 : 약 50,000m², 건축면적 : 약30,000m²

참고자료 2. 1차년도 인력계획

인건비 (생산)	생산라인	소요인력	급료/인	금 액	비고	
1) 분체	2	6	\$ 200	\$ 1,200	1명 /라인	3 교대
2) 제습	1	3	\$ 200	\$ 600	1명 /라인	3 교대
3) 배합	1	6	\$ 200	\$ 1,200	1명 /라인	3 교대
4) 트윈	6	36	\$ 200	\$ 7,200	1명 /라인	3 교대
5) 관리직		2	\$ 1,000	\$ 2,000	1명 /라인	3 교대
소 계		53		\$ 12,200	,200 \$ 11.89 /Ton	

▶ 예상 생산량- 1,026톤/월

	1 차년.			
구 분	2	Line	1,026 Ton	
	인원	급여	금액/월	%
판매관리비				
1) 사무직	6		8,800	
(1) 경리	1	300	300	
(2) 영업	2		1,500	
- 국내	1	500	500	
- 해외	1	1,000	1,000	
(3) 무역	1	500	500	
(4) 구매				
(5) 사무실 매니저	1	1,500	1,500	
(6) 사장	1		5,000	
3) 생산관리	4		2,000	
(1) 생산기획, 관리	2	500	1,000	
(2) 생산관리 매니저-1명/ 5 Line	2	500	1,000	
(3) 공장장				
4) 배송 및 운전	3	400	1,200	
소 계	13		12,000	

- ▶ 해외영업
- -2차년도 이후
- -한중일, 동남아, 중남미, 유럽중동 등 해외영업 인력 충원

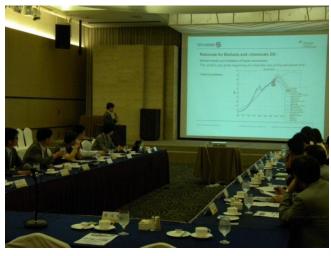
첨부. 포토갤러리 1

2011. 4. 28. 협회 오픈식 & 현판식

친환경 자동차 협약 : 2011 협회, SK케미칼, SH글로벌, 에이유 (왼쪽부터)

2012년 4월 정례모임 : 중국 상해 차이나플라스

첨부. 포토갤러리 2



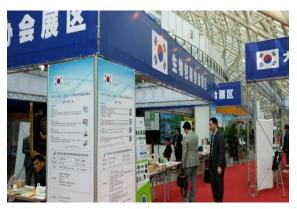
2011. 9 한국기술대전-KOPLAS

2012.12 해외 협력추진: 경기도청

2012 바이오화학제품 인증제 자문위원회 지경부, 생명공학연구원

2012.12 VIP ASIA AWARD

2013.01 협회 세미나 - 경기중소기업청


2013.5.30 연합 심포지움 - PAC 2013

think green

첨부. 포토갤러리 3

2013. 5. 30 한-중 공동연구 협약 체결

2013. 9. 23~ 심양 동북삼성 전시회

2013. 11. 8~ 광저우 전시회

2014.03 광양청 업무협약 바이오밸리-10만평 (34만평)

2014.06 UAE ESMA 방문

2014.07 산동성 제남 전시회

첨부. 포토갤러리 4

2014.10 경기도생활체육회 협약 체결

2014.12 장쑤성 난징 심포지움

2015.02.27~28 광양청 심포지움

2015.03.03 전남도, 광양청, 광양시 협약식

2015.04.02 경기도 경경련 협약식

신소재 및 신제품 개발은 고부가가치 창출을 위한, 우리의 도전이며 기회입니다.

ㅇ첨부자료: (1)적용제품, (2)주요 시험결과

첨부. 적용제품 - 필름류

손잡이 쇼핑봉투

← 링펀치 쇼핑봉투

DM봉투 →

농업용 필름 육묘포트

첨부. 적용제품 – 산업용, 건축, 토목용품 등

첨부. 생산 제품 - 생활 용품

생활용품

기능성 제품, 실생활에 다양한 용도로 사용 일부 품목은 합성수지 제품 대비 가격 유사 식기세척기, 냉장고, 전자레인지 사용 가능

첨부. 생산 제품 – 트레이, 식품포장, 문구, 기능성

상품포장용 완충 트레이

식품포장, 문구류

기능성 (전도성, 방충 등)

Key Point

캐스팅성형(시트), 필름(속지), 사출(장식)의 복합체 백화현상, 초음파가공성, 투명도(무광) 등 바이오매스 소재를 적용한 친환경 제품

첨부. 적용제품 - 친환경 종이류

해리성 우수 (Alkali sensitive Coating paper)

첨부. 주요시험 자료 – 안정성 test

한국식품포장연구소 / KFIP

@ Product Identification: KBMP - EH-X

@ Samples Received: 2012. 03. 12

Analysis Requested : 식품공전 제 7. 기구 및 용기포장의 기준 및 규격/ Korean Food Standards

Codex 7, Standards and specifications: packaging of appliance and containers.

Test item			Unit	Standard	Result
	Pb				
Materials	Cd		mg/kg	Below 100	ND
test		Hg		(in total)	(Limit detection 1)
	Cr ⁶⁺				
	Heavy metal by Pb Potassium permanganate consumption			Below 1.0	ND
				Below 10	0.4
ъ и:		By 4% acetic acid		Below 30	0.5
Migration test	Residues	By H ₂ O	mg/L	Below 30	1.0
	evaporated	By n-heptane		Below 30	0.5
	By 20% ethanol			Below 150	1.0

FDA

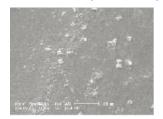
@ Product Identification : KBMP - EH-X

@ Samples Received : 2011. 11. 30

@ Analysis Requested : Extraction studies done

in accordance with US FDA 21 CFR 177.1520

Parameter	Result	Limit detection	FDA limit
Hexane Extractables	0.048%	0.001%	6.4%
Xylene Extractives	0.077%	0.001%	9.8%



첨부. 주요 시험자료 - 산화생분해

미생물 생육 시험 / Microbe growth test results

ASTM G 21에 의하여 곰팡이를 접종하고 28~30 °C, 상대습도 85%에서 60일 배양/ASTM G 21, 28~30°C, 85% Relative humidity, 60 days of cultivation, SEM 1,000×

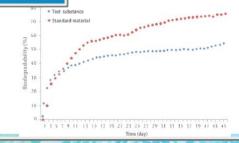
일반 플라스틱(PE)

산화생분해 플라스틱 /Oxo-biodegradable plastic film

생분해 플라스틱 /Biodegradable plastic film

광분해 & 열분해 실험 / Thermo & UV degradable test results

UV Degradable Thermo Degradable


ASTM D 5510을 변형하여 68 ± 2 C°, 상대습도 85% 에 의한 신율변화를 측정한 결과 **세로방향은 20일 이후, 가로방향은 60일 이후에 분해종료점에 도달** By modifying ASTM D 5510 and measuring the change elongation by heat in 68 ± 2 C, 85% relative humidity,

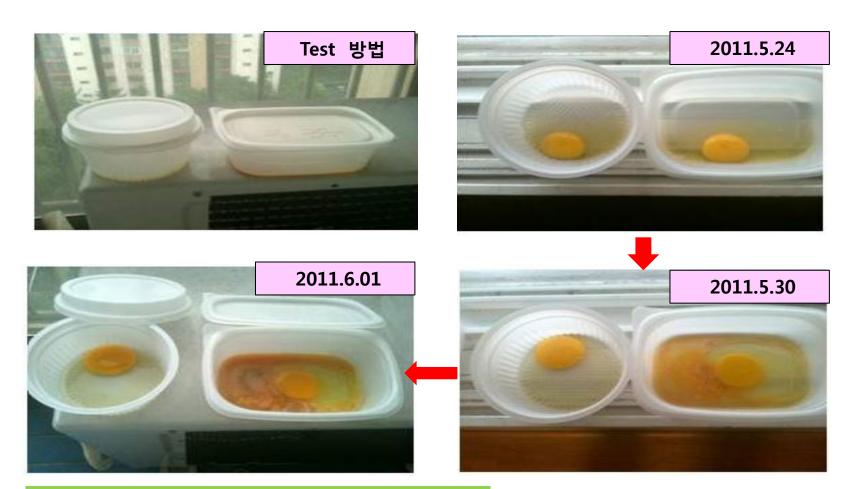
Vertical side reached end point of degradation 20 days later and the horizontal side 60 days later.

한국의류시험연구원(KATRI) no. SRED15-00000005

생분해 실험 / Biodegradable test results

contents	Biodegradability	period
Standard material	77.30%	45days
Test substance	55.40%	45days
Compared to Reference material	71.67%	45days

ISO 14855 방법에 의해 산화생분해 플라스틱의 생분해 시험 진행

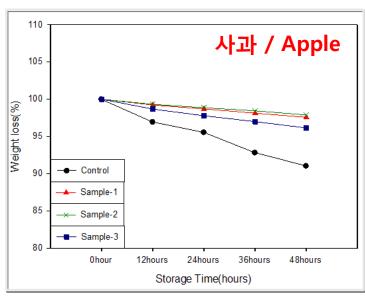

45일 이내에 표준물질(셀룰로오스) 대비 71% 생분

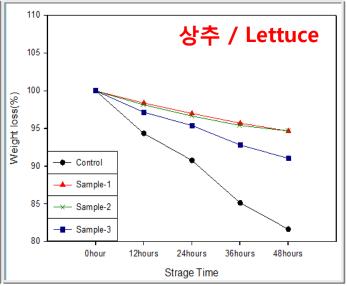
Curve of biodegradability calculated by the average carbon dioxide emissions.

- CO2, H2O : ISO14855

첨부. 주요시험 자료 – 신선도 유지

- 1. 시험 기간: '11년 5월 24일~ 6월1일(7일간)
- 2. 온,습도: 상온 상습 동일한 조건
- 3. 사진 좌측: 바이오 플라스틱 포장용기 (당사제품)
 - 사진 우측 : 본죽 일회용 포장용기

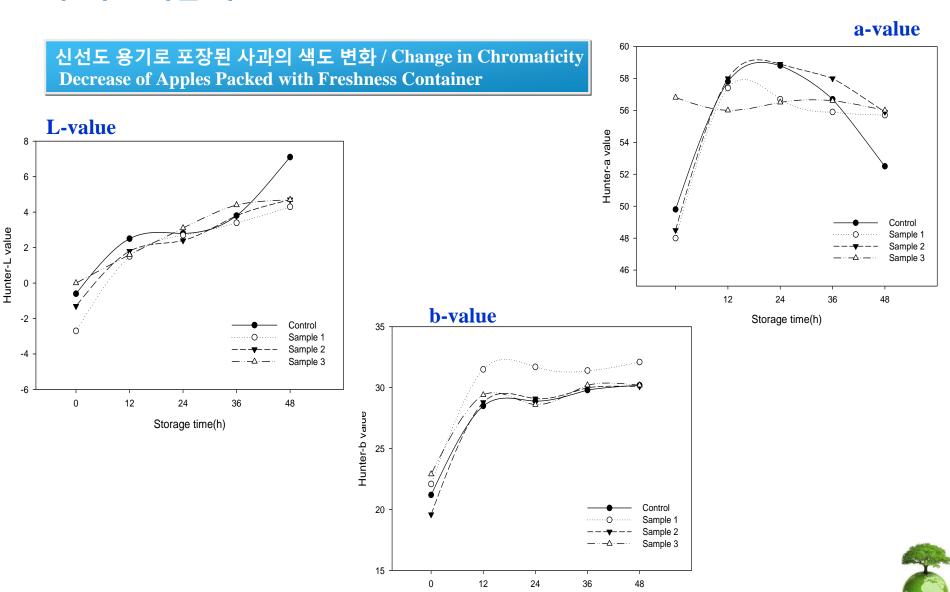




첨부. 주요시험 자료 – 신선도 유지

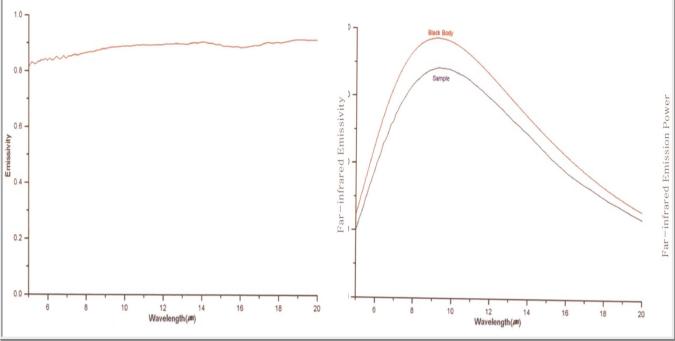
과채류의 중량감소율/Change in weight decrease of fruits and vegetables

❷ 신선도 용기로 포장된 과채류의 중량감소율 변화 / Change in weight decrease of fruits and vegetables packed with freshness container



첨부. 주요시험 자료 – 신선도 유지

Storage time(h)

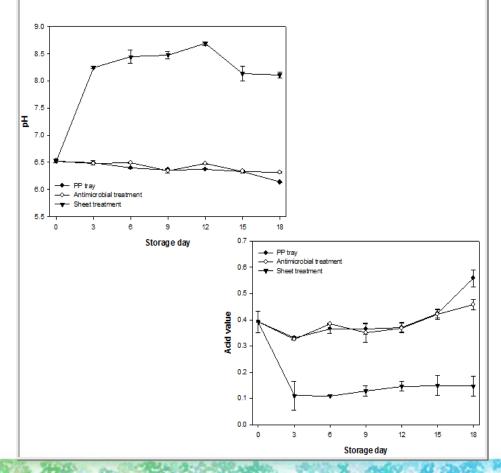


첨부. 주요시험 자료 - 원적외선

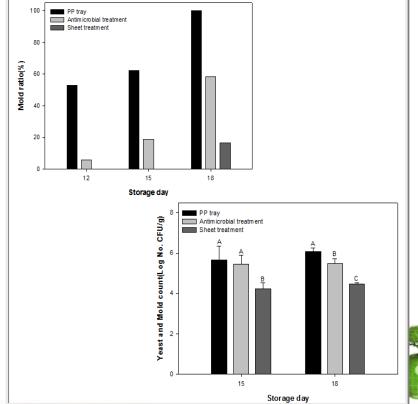
원적외선 / Far-infrared Radiation

Item	Unit	Results	Test method
Far-infrared radiation emissivity	-	0.885	WCL FID 1005 2011
Far-infrared radiation energy	W/m ²	3.57 x 10 ²	KCL-FIR-1005: 2011

KCL 한국 건설생활환경시험연구원 / Korea Conformity Laboratories 성적서 번호 / test report No. : FWRIC07001. 2011. 12. 07



첨부. 주요시험 자료 - 항균


제품 적용 시험 / Product Application Test

어묵 포장에 적용 / Applied to packaging of Fish paste

- ♥ 저장 중 PH 및 산가 변화 / PH and acid changes during storage-개발제품 적용 포장재가 더 우수함
- / Applying a packing material EH-x is obtained better results

◎ 개발 제품의 곰팡이, 사상균에 대한 효과 / Effect on mold and a filamentous fungus -일반 포장 및 시장 항균 포장재 대비 약 1.3배 저장기간을 연장하는 효과 / The effect of extending the storage period by 1.3 times compared to the general antimicrobial packaging

첨부. 주요시험 자료 - 항균

필름 & 종이 항균, 살균 시험/ Film & Paper Antibacterial Test

항균시험 (JIS Z 2801 : 2010, 필름 밀착법) : 세균 수/cm², 항균 활성치 log

Antibacterial Test (JIS Z 2801 : 2010, Film adhesion method) : Bacteria/cm², Antibacterial activity value log * FITI 시험연구원(FITI testing & research institute)

균주 1 필름 시험(Bacteria 1 film test) : Staphylococcus ATCC 6538P

대조구 / Blank 실험구 / Sample 1& 2

ATCC 6538P	The initial No.	After 24 hr	Antibacterial activity value
Blank	1.4 X 10 ⁴	2.0 X 10 ⁴	-
Sample 1	1.4 X 10 ⁴	< 0.63	4.5(99.9%)
Sample 2	1.4 X 10 ⁴	< 0.63	4.5(99.9%)

균주 2 필름 시험(Bacteria 2 film test) : *Escherichia coli ATCC 8739* (Name of Bacteria)

대조구 / Blank 실험구 / Sample 1& 2

ATCC 8739	The initial No.	After 24 hr	Antibacterial activity value
Blank	1.7 X 10 ⁴	1.3 X 10 ⁶	-
Sample 1	1.7 X 10 ⁴	< 0.63	6.3(99.9%)
Sample 2	1.7 X 10 ⁴	< 0.63	6.3(99.9%)

첨부. 주요시험 자료 - 방충

진드기 기피성 평가시험 (침입저지법 FC-TM-21)/ Tick repellent assessment test (FC-TM-21) 큰다리 먼지 진드기 사용 /
Used Dermatophagoides farinae * FITI 시험연구원(FITI testing & research institute)

Division		D - f			
N number	1	2	3	Reference	
Intrusion object number	14	20	23	14.056	
Evasion rate	99.9	99.8	99.8	14,856	

화랑곡나방 유충(Plodia interpunctella larva) 천공 및 기피활성 자체 실험 (Boring & avoidance self test)

접시 상단에 EH-X premium 처리 /EH-X on upper part of plate 접시 하단은 처리 안 함 / The lower part of the plate is Non treated

Treatment	Treated (upper)	Non treated (lower)
Control(0%)	11.0	9.0
0.01%	4.8	15.2
0.03%	4.0	16.0
0.05%	4.4	15.6
0.08%	5.4	14.6

첨부: 주요시험 - 방충

방충 시험/Insect proof test

진드기 기피성 평가시험 (침입저지법 FC-TM-21)/ Tick repellent assessment test (FC-TM-21) 큰다리 먼지 진드기 사용 / Used Dermatophagoides farinae * FITI 시험연구원(FITI testing & research institute)

Division		D. C.		
N number	1	2	3	Reference
Intrusion object number	14	20	23	14.056
Evasion rate	99.9	99.8	99.8	14,856

화랑곡나방 유충(Plodia interpunctella larva) 천공 및 기피활성 자체 실험 (Boring & avoidance self test)

접시 상단에 EH-X premium 처리 /EH-X on upper part of plate 접시 하단은 처리 안 함 / The lower part of the plate is Non treated

Treatment	Treated (upper)	Non treated (lower)
Control(0%)	11.0	9.0
0.01%	4.8	15.2
0.03%	4.0	16.0
0.05%	4.4	15.6
0.08%	5.4	14.6